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SEMICLASSICAL APPROACH
TO THREE-BODY MUON-TRANSFER COLLISIONS

R.A.Sultanovl, W.Sandhasl, V.B.Belyaev2

Muon-transfer rates in collisions of hydrogenlike atoms (pi”) or (du™ ) with light nuclei

t, *He, 4He, ®Li or "Li are calculated in a semiclassical approximation to the Faddeev—Hahn
equations. The two nuclei involved are treated classically, while the motion of the muon in
their Coulomb field is considered from the quantum mechanical point of view. The
experimentally observed strong dependence on the charge of the nuclei is reproduced.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.

Tpexqacmqnan nepesapaaka MIOOHOB
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B pamkax nonyknaccuyeckoro npubnuxenus X ypasHeHusm Damgeesa—XaHHa paccMoT-
PeH NpoLecC Nepe3apiakH MIOOHOB MpH CTONKHOBEHHH (U™ ) M (dU”™) ¢ JNerKHMH sapamu
t, 3He, “He, SLi, "Li. B zanoMm TIOAIXOA€ TAXE/IbIE YAaCTHUb! PaCCMAaTPHBAIOTCA JBHXYLUIAMHCS
10 KITaCCHYECKUM TPACKTOPHAM, B TO BPEMsS KaK MIOOH ONMCHIBAETCH KaK KBAaHTOBad YacTHLA.
YcTaHOBTEHHAS IKCMEPHMEHTATLHO CHILHAY 3aBHCHMOCTb CEYECHHS fepe3apaikd OT 3apsaia
44pa BOCIPOM3BEIEHA B JaHHBIX pacyeTax.

PaGota Brinonsena B JlaGoparopuu Teopernueckoii ¢husnku um. H.H.Boromo6osa OUSIH.

1. Introduction

The motion of negative muons in hydrogen media with admixtures of elements A of
charge Z>2 shows a peculiar behavior [1,2]. Opposite to the smooth Z dependence
predicted by the Landau-Zener formula, the experimental muon transfer rates in processes

like (pu™)+ A — p + (AW”) depend in a complicated manner on the charge Z. The measu-
red isotopy effects, e.g., the ratio of the transitions (P )+ Ne > p + (Nept™) and

(d )+ Ne = d + (Nep™), differ also considerably from the Landau-Zener predictions.
Another phenomenon which has not yet found a satisfactory theoretical explanation is the
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itme distribution of the y production occurring in such transition processes {3]. In what
follows we develop a method for solving these problems, which is based on detailed few-
body equaitons rather than the effective potential treatment employed in alternative inves-
tigaitons.

Coulombic three-body systems with two heavy and one light particle are considered
traditionally within the framework of the Born—Oppenheimer approximation. For muon
transfer processes, Faddeev-type equations {4], especially the modified version proposed by
Hahn [5], appear to be better suited. They are formulated for appropriately chosen wave-
function components which show the correct physical asymptotics. Our method for des-
cribing rearrangement processes

2+(1,3) > (2, 3)+1 (1)

with one light particle 3 of charge Z, = -1 and two heavy particles 1 and 2 of charges
Z,=1land Z,=1,2,3,.., is based on a semiclassical approximation to such Faddeev-

Hahn (FH) equations [6]. These equations are treated by means of an adequate coupled
channel expansion.

In the following section we develop the formalism. The results obtained for the col-
lision of hydrogenlike systems (hu™)= (pu”) or (du~) with light ions ¢ ™, 3He“', 4He++,
8Li*** or TLit*™ are given in Sec.3. Fairly good agreement with quantum mechanical
calculations is found for processes involving ¥ and He® ™. This justifies to apply our
semiclassical approach also to processes of higher charge, like Li* **, for which no fully
satisfactory quantum mechanical calculations exist. As an additional test of the method,
calculations for the charge exchange scattering of protons off electronic hydrogen atoms are
also performed.

In the muonic case the units are e=h=mu= 1, in the electronic case we use

e=h=m =1
€

2. Formalism

Written as integro-differential equations, the Faddeev equations [4] read
i = Ho= v, lep=vidw)+ [, @

Here H is the kinetic energy operator of the three particles,
H=-7"7—A +—-A 3)

rjk and R[ are the Jacobi coordinates; “jk and MI, the corresponding reduced masses; ij‘

the two-body potentials.
As mentioned above we consider particle 3 to be the light one, i.e.,

m 3 m

Scl, 2D, @
'n] ,nz
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Then, the heavy particles 1 and 2 can be considered as moving along classical trajectories
R,(?) and R, (#). For the treatment of this situation we employ, instead of the three Faddeev

equations, the two coupled FH equations [6]

3 P ZyZ, zZ,z,
Yo T 2_“1 V3™ = %q |16 RO, 0= [ Vis® = 2a J\Pz(r, R(), 1),
2
R ZZ, z,Z,
i3 2u = V() - RO ¥, T R@, = [ Vs = 2y o J‘P r, R@, . (5)

Here, R(?) is the relative vector between particles 1 and 2, its time dependence being
determined according to classical mechanics. The motion of the light particle 3 is treated
quantum mechanically, p.= Vr /i is the momentum operator corresponding to the relative

variable r between particle 3 and the center of mass of particles 1 and 2. The relative
vectors in the (13) and (23) subsystems are denoted by x and y, respectively, and the
corresponding reduced masses are given by

B, = m1m3/(m1 +my),  H,= m2m3/(m2 + my). (6)

To solve equations (5), we expand the wave function components ‘Pk(r, R(?), 1) into the

solutions @ :3(r, R(?), 1) of the respective subsystem Schrodinger equations

ié—p—f—V(r—R(t)) ®Bw, R (1), 1) =0 | %)

a 2u K k n W D :
That is, we write . ®
P R0, ) =3 + ), AR, 0 0P, R, ), ®)

the summation (integration) running over the whole discrete and continuous spectrum.
For a constant velocity Rk(t) =v, one finds

TR ~r—i(Ek3+p.DZ/2)t
@, R, h=e T P e -Rr ), ©)

the functions (pfl3 being given by
1 . . »
[— 3 At Ve ](pff’(x) = ERgP(x). (10)

Inserting the expansion (8) into (5), we obtain for the coefficients an a set of coupled
equations [6]



94 Sultanov R.A. et al. Semiclassical Approach

aC (R(I) 1)

i—t—=0+ j)m W (R(1), 1) Y22 (1) C X(R(@), 1),
ac? (R(), 1)
i = (X + [, Wh RO DY) € R, 0, (in
where . o
El. _ E R Af: ) 5
Vo) = e T, A0 EF =- ujZI,“/2712, jrk=1,2. (12)

The matrix elements V\{ﬁn(R(t). 1) are obtained by sandwiching the potentials in Eq.(5)

between the channel functions (9),

zuo r—ig U{/

Jk = Joi j3 N _ _
an(R(t) 1= (e ,, (r Rj(t)) Vj3(r R](t))
Z. Z TR -r—iuu:r/z
j 3 C k i .
TS R £ MO (13)
Fflations (5) are to be solved under the initial condition L
Y. (r, R(. 1 ~ dbif_(r. R(), 1. ¥, (r, R®, 1 ~ 0, (14)
I = — o =~ o0

which implies for the coefficients C,{(R(t), )

c'Rn.n -~ 8. CHR®.H ~ O (15)
t— —o0 t——oo

For low-energies, say below 20 eV, the relative nuclear velocities are practically zero

in the respective muon-atomic unities. The exponential factor in Eq.(9), hence, can be

replaced by unity and the matrix elements (13) simplify to

WA R@) =
=[ao e =R | V.(r-R(®) - 44 3 - R (1) (16)
=Jdae, (0) | Vialr = R(0) = e 16, = Ry(0)

In order to obtain the capture probabilities lCZ(I ~ °°)|2 we, thus, have to solve the

_system of coupled ordinary differential equations (11), its ingrediengg, @,Qddmnal conditions
5?1';1 g given by (12), (15) and (16).

The trajectories of the heavy particles will be chosen as straight lines, R(t) = p + vt for
t £ 0and R(r) =p + v’ for r > 0, with v being the impact parameter, v and v’ the velocities
before and after the collision, respectively. Taking them as asymptotes to the actual motion,
the angle between their directions, i.e.. between v and v’, is the deflection angel 9.
Moreover,

- (17)
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Fig.1. The relative positions of the heavy particles h and A before
and after collsion: the straight line @ is an approximate trajectory,
b is the real one

v =V2(E + AE) /M,

where E is the CM collision energy,

AE=E _g2
n m
and .
_ (my +m,)) m, _ (m3+m2) m,
1- o 2° m
my +m,+m, m; +m, + m,

95

(18).

(19)

(20)

To choose the trajectory before the collision as a straight line is justified because of the

neutrality and the small size of the incident hydrogenlike atom (hu™). To choose a straight
trajectory also after the charge exchange process is, of course, an approximation to the real

hyperbolic curve (Fig.1).
From the definition of R(f) we infer

Rty =Np?+v%2, forr<0

and

R() = \/pz +v2? - 2pv’t sin §.
The angle © is determined according to classical mechanics (Fig.1),

2n

(22)
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o/ Pdr (23)

— 2/ - U/ T,

v

Y= 2 -
EEINy

with the final-state impact parameter p’ being given, due to angular momentum conser-
vation, by

Mv
‘= . 24
p MZU, p (24)
U(r) is the screened Coulomb potential between h = p+ ord* and (Ap7),
-2Z ur
U(r):(ZZ—l)/r+(l/r+22u2)e cT (25)
The lower bound .rm.m of the integral is obtained as a root of
2 Ulr )
| - _;L _ Tmln =0, (26)
rmin kin
where 2
M,u
Tkjm =" 27

represents the kinetic energy of the outgoing fragments in the center-of-mass system. Note
that the angle in (23) is half the one given in [7] since the Coulomb-like potential (25) acts
only during the time after the collision.

When solving the resulting coupled set of equations for the expansion coefficients, it

is seen that its solutions an(R(t), 1) tend towards an asymptotic value an(p) which depends,

of course, on the impact parameter p. The cross section of process (1) is given by

+ oo
o =2n | 1c2p)]? pdp. (28)
0

3. Results

In this section we present cross sections G, and muon transfer rates X” calculated

within the above formalism for processes of the type

(hW™), + A = (Au), + h, (29)

where h=pTord* and A = t*, Het ™, *Het ", SLi*** or 'Lit**. We restrict ourselves to
a two-level approximation by choosing in the relevant close-coupling expansion only the

hydrogenlike ground states (h"l_)ls and (A“_)l.:' The trasfer rate is defined by
A, =0, ON, 30

¢

with v being the relative velocity of the incident fragments and N, the liquid-hydrogen

density chosen here as 4.25 x 10*> cm™.



Sultanov R.A. et al. Semiclassical Approach 97

0—20

In Table 1 we compare our cross sections otr/ 1 cm? for the case h=d”* and

A =t ™ at various collision energies E with those of Ref.8. For the muon transfer rate of this
process at E =0.04 eV we find A= 3.70 x 108 sec™!. Measurements of this value range

from A" = 2.8 x 108 sec™ [9] to A" F = 3.5 x 10° sec™! [10].
The rates A,/ 10% sec™! for h = prord* and A =3Hett, ‘Het *OSLiT T or TLittY at

E =0.04 eV are presented in Table 2 together with the He* * and “He™ ™ results of [11].
Experimentally p* the rates are about twice as big as the d * rates. Our results are consistent

with this observation, while the corresponding ratio in [11] is definitely too high.

Table 1. Cross sections o,, / 102 cm? for £ + dp) > (m)+d
E (eV) Our results [8] E (eV) Our results [8]
5.0 340 2.87 1.0 3.05 143
3.0 3.17 2.12 0.1 3.16 2.00 -
2.0 3.12 1.76 0.04 3.50 2.94
Table 2. Muon transfer rates A,/ 10° sec”! at low energy E = 0.04 eV
SHett [11] ‘Hett [11] oL+ Lt
pt 7.25 6.3 6.65 5.5 1.72 1.67
d*t 477 1.3 4.17 1.0 1.01 0.96
1.8 T
This work
16 F Y. Kino and M. Kamimura [12]
®
14 F ‘ : :
— 12} ° 1
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Fig.2. Cross section of the reaction dji + r — tw+d
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Table 3. Cross sections o, / 107'% em? for charge exchange scattering of protons
by hydrogen atoms

E (eV) Our results [13] | EteV) Our results {13]
10.0 3.73 t 1.0 4.95 4.54
50 4.10 372 1 o 5.60 5.18

Figure 2 shows our du +t — 0 + d cross sections compared with variational calcu-
lations [12] which are generally considered to be most accurate. It is seen that the shapes
of the curves agree fairly well over a wide energy range.

All these comparisons demonstrate the efficiency of our semiclassical treatment for
atoms of charge Z = 1 or 2. Its application to processes involving higher charges, therefore,
is expected to be also justified. Our ®Li or "Licalculations represent first examples for such
an extension.

As a further test of our method, we have also calculated the low-energy charge exchan-
ge scattering of protons by hydrogen atoms '

p[ +(p27 ‘—’)—)(Plv €)+p2. (31)

In Table 3 our results are compared with calculations based on the Born-Oppenheimer
approximation [13]. The agreement is again quite satisfactory.

Calculations involving nuclei of higher charge, and a full quantum mechanical treat-
ment are in progress.
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